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Abstract—Fixational eye movements (FEMs) are an essential
component of vision and there is considerable research interest in
using them as biomarkers of brain injury and neurodegeneration.
Study of FEMs often involves segmenting them into their individ-
ual components, primarily microsaccades and drifts. In practice,
velocity (or acceleration) thresholds are commonly adapted–while
they are generally imperfect–requiring tuning of thresholds and
manual correction and verification by human graders. Manual
segmentation and correction is a tedious and time-consuming
process for human graders. Fortunately, it can be observed from
Tracking scanning laser ophthalmoscopy (TSLO) video record-
ings that the directional variances of FEMs can be extracted
to mathematically characterize microsaccades for segmentation
and distinguish from drift. Therefore, we perform a directional
variance analysis, extract relevant features, and automate the
model using artificial neural networks (ANN). We propose and
compare two directional variance approaches along with an ANN
model for the segmentation of microsaccades. The first approach
utilizes a single-point based feature variance, whereas the second
approach utilizes a sliding-window based feature variance with
the information from several time points. We calculate several
statistical metrics to characterize the features of the microsac-
cades such as the number of microsaccades, microsaccade peak
velocity and acceleration, and microsaccade duration. We have
also calculated the accuracy, precision, sensitivity, and specificity
scores for each approach to compare their performance. The
single-point models labeled the FEM data with an accuracy of
70% whereas the sliding-window approach had an accuracy of
85%. When comparing the percent errors of the approaches to the
ground truth, the sliding-window approach performs significantly
better than the single-point approach as it captures more relevant
directional variance features of FEMs.

Index Terms—Fixational eye movement, microsaccade, artifi-
cial neural networks, directional variance, feature space

I. INTRODUCTION

Precise quantification of fixational eye movements offers

promise towards improved understanding and detection of

neurological conditions and brain injury [1]. Fixational eye

movements (FEMs) are the miniature, involuntary eye move-

ments that keep the eye in constant motion, even when an

individual attempts to maintain their gaze on a motionless

target [2]. There are two main classes of FEMs: microsaccades

and ocular drifts. In brief, microsaccades are fast, ballistic

movements whereas drifts are slow aperiodic movements that

occur between microsaccades [3]. The majority of fixation

time is spent in the drift state. FEMs are essential not only for

visual function but also neural processing. Enhancing spatial

vision and synchronizing sensory and motor neural activity are

just two purposes that FEMs serve [3], [4].

Current clinical approaches to measure eye movements

have utilized video-based eye-trackers that in general lack

the resolution to precisely measure the smallest movements

of the eye [5], [6]. With TSLO, clinicians and researchers

may obtain precise FEM data with higher spatial and temporal

resolution compared to other eye trackers [7]. The TSLO

records movement of the retina and the FEM data can be

extracted using custom software [4]. With the extracted FEM

data, using a simple threshold on a parameter such as velocity

or acceleration may suffice for a baseline classification for

microsaccades but due to their complex nature, being able

to accurately and consistently pinpoint the starts and ends of

them with this method remains difficult. The inaccuracies of

temporal measurements make the calculation of metric (e.g.,

acceleration, duration and amplitude) more difficult.

Precise determination of the entire timecourse of each

microsaccade cannot be determined using this method so

require alternative methods, such as the manual marking of

the starts and ends of the microsaccades. Also, due to the lack

of any sophisticated method of accurately marking the starts

and ends of microsaccades, the only alternative is to proceed

with the cumbersome process of manual marking. Previous

work has been carried out to minimize manual classification

of micosaccades. Engbert and Kliegl pioneered this area of

research on undergraduate students fixating on a target [8].

The detection threshold adapted was based on the standard

deviation of the velocity. They also used binocular information

to reduce noise during the detection process. A unique feature

used in this method is a variable ”lambda” factor that is

influenced by the noise present in the dataset. This allows

for robustness across subjects but also introduces another

parameter that needs to be adjusted between trials.

Otero-Millan, Castro, Macknik and Martinez-Conde devel-

oped a method of eye movement detection using an unsuper-

vised learning method clustering technique [9]. The clustering

technique groups observations with similar features. For this

method, they considered features such as peak velocity and

acceleration when detecting microsaccades. They used princi-

pal component analysis on the characteristics that were highly
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Fig. 1. (a) Graph that displays the x-position, y-position, and velocity of a participant’s eye motion trace with respect to time. (b) Lateral movement of eye
that depicts a vector space–determined by x-position, y-position, and velocity–in which a vector belongs to one of the groups (microsaccade, drift, or blink).

correlated and then clustered to decrease dimensions and

computation costs. Zemblys et al. have studied and developed

a fully automated classification of raw gaze samplings as

belonging to fixations, saccades, and post-saccadic oscillations

by training a random forest (RF) classifier [10]. They trained

their classifier using ground truth labels and several post-

processing heuristics. They then assessed the performance

of their classifier and found that it was able to detect all

saccades and subsequent post-saccadic oscillations. However,

the microscopic measurements recorded by a TSLO, such

as microsaccades, will be different from large gaze-orienting

saccades in that they are involuntary, rapid, and much smaller

in magnitude. These methods were consistent in using peak

velocity and acceleration as key features used to classify

the microsaccades. However, it is expected that the artificial

neural network (ANN) architecture–due to its sophisticated

feature learning module–could efficiently learn the features

of microsaccades dynamically from the data by performing

a simple threshold on these features. Motivated by the ability

of classification of a one-dimensional ANN architecture [11]–

[15], we present an experimentally validated neural network

model that is capable of automatically segmenting microsac-

cades from drifts. We also proposed two different approaches

that differ in the feature space of the dataset used.

The ANN model is a computational tool that is capable of

predicting response variables from a dataset to make decisions.

Its architecture is inspired by the neuronal connections within

an animal brain [16]. Similar to the brain, there are different

layers in an ANN and each layer has varying numbers of

nodes, which are analogous to neurons in the brain. When

backpropagating through each layer, an output weight is

computed through an activation function that can be tuned

by the user [16]. There are a myriad of hyperparameters in

an ANN that can be fine-tuned by the user to improve the

performance. The number of nodes in the hidden layers and

the number of hidden layers are the hyperparameters that were

tuned in this study. The tuning of these parameters were made

through through a sequence of simulations by treating ANN’s

architecture a black box. In this study, we present an ANN

model that was trained using feature vectors that are generated

by using two different feature space approaches.

II. METHODS

The first approach used a single-point based feature space.

In this approach, the model learned to label each FEM data

point based on the information of the features from a single

data point. The second approach used a sliding-window based

feature space. In this case, the model learned to label each

FEM data point given the information of the features from

not only one data point but also several data points before

and after. The preprocessing protocol for the training data

differed across the two approaches. We worked with a time-

series dataset of FEM recordings from healthy participants

imaged in a previous study [17].

A. Type of Data Used

The FEM datasets used came from 44 different participants

(mean age 17.0 ± 3.2 years; 24 females (55%)). Multiple

recordings (varying between 1-10 recordings per participant)

were acquired from each participant; a total of 340 TSLO

recordings was included in this study. The motion of the

eye was extracted from these videos using a custom software
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Fig. 2. (a) Eye motion trace of eye movement with blinks, (b) Eye motion
trace of eye movement without blinks.

that was developed at Rossi Lab [18]. The eye motion in-

formation that as extracted from these 30 frames per second

recordings using 16 strips per frame resulted in a nominal

temporal sampling frequency of 480 Hz. Microsaccades, were

segmented using a tedious manually intensive approach where

a velocity threshold was used to identify microsaccades and

their start and end points were marked manually by trained

graders. The dataset provided an x and y positions, and a

label (microsaccade or drift) at each time point, see Fig. 1.

B. Preprocessing of Data

The data collected from all of the participants were con-

catenated to create one large dataset. We removed the blinks

from the compiled dataset by locating them using their cor-

responding labels. The blinks were removed by adapting the

method proposed in [18]. However, removing the blinks and

simply concatenating the data points before and after the blinks

creates an issue of discontinuous data. The positions of the eye

before and after blinks are not necessarily the same, resulting

in the data showing a sudden change in eye position. Due to

microsaccades being classified as fast, ballistic movements,

the neural network may misclassify this discontinuity as a

microsaccade. We incorporated a stitching function to avoid

this type of misclassification error. The function calculates

the difference in position between the data points before and

after the blink and sums all data points subsequent the blink,

resulting in the dataset appearing continuous. A representative

eye trace before and after applying the stitching function is

shown in Fig. 2. Once all blink labels were removed from

the dataset, the velocity of the eye was calculated using the

derivative of the positional information. The velocity of the

first data point was assumed to be 0 for all datasets.

C. Computational Modeling

We denoted the preprocessed time series data of FEM

recordings by U = {u1, u2, . . . , un}, where u ∈ U is a three-

dimensional data vector u = (x, y, v) and u is labeled as

either a drift (1) or a microsaccade (0). The variables x, y,

and v, as stated before, represent the x-position, y-position,

and the velocity of the eye. We then constructed two types of

feature vectors to characterize the relationship between their

feature spaces and the response sets (labels 0 or 1). This was

implemented with two computational models for developing

machine learning techniques. The core concept adapted in

these computational model is the directional variance.

1) Directional Variance: The concept of directional vari-

ance has been used in many applications, including the design

of an image quality metric [19], fingerprint classification [20],

and [21]. To capture the directional variances of the feature

vector (x, y, v) with respect to microsaccade, drift, and blink,

we constructed feature vectors (or space) using single-point

directional variance analysis and sliding-window directional

variance analysis. This is also called feature learning of FEMs.

2) single-point Feature Learning: We modeled the feature

space for the single-point analysis using the three-dimensional

vector u = (x, y, v) such that a parametric learning model fα,β
that approximates the following mathematical relationship

becomes our machine learning model:

l = fα,β(u), (1)

where the parameters α and β are sets of hyperparameters and

learning parameters, and l ∈ {0, 1}.

3) Sliding-Window Feature Learning: We modeled the fea-

ture space for the sliding-window analysis using the window

of consecutive data points (d1, d2, . . . , dk) in the time series

data of FEM recordings by U as its feature vector. In other

words, the step size of the sliding window is a single data point

to identify and record microsaccade labels that are generally

sparse. Although this process generates a large feature space

with many redundant observations, the modern computing

resources and the automated ML classifiers allow the proposed

approach to handle such a big data environment. Each data

point is a three-dimensional feature vector (x, y, v); hence,

this feature vector is a 3k dimensional vector. We represent

this feature vector by wk = (w1, w2, . . . , w3k). Note that we

empirically determined that k = 12 was sufficient to define

the drift or microsaccade classes; hence, the dimension of

the feature vector used for the sliding-window analysis in our

experiments is 36. Therefore, our learning model is:

l = fα,β(wk), (2)

where the parameters α and β are sets of hyperparameters

and learning parameters, and l ∈ {0, 1}. Additionally k is

also considered as a hyperparameter. The dataset for the

sliding-window analysis consisted of 37 elements in each

data point. The size of the window was set to 12. The x

position, y position, and velocity for the 12 data points were

in each window. If the window contained more drifts than
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microsaccades, that window was labeled as a microsaccade

and vice versa. All ties were labeled as microsaccades.

D. Balancing the Feature Spaces
Imbalanced datasets can be problematic for training of

neural networks. The dataset was imbalanced with 92.1%

drifts and 7.9% microsaccades. With this imbalanced data

characteristics, the ANN model could label all datapoints as

microsaccades and achieve 92.1% accuracy, without learning

the features of microsaccades. To solve this issue, we separated

the microsaccades and drifts into two different datasets. We

then created new, balanced datasets by combining all the

microsaccades with the equivalent number of data points of

drifts. The drift data points used on a previous balanced dataset

were not reused when creating another balanced dataset. This

process was repeated until the number of drifts in the original

drift dataset was less than the total number of microsaccades in

the microsaccade dataset. This resulted in 11 datasets with an

even distribution of microsaccades and drifts. The 11 datasets

were then randomized and split into the training and testing

datasets (80:20). Using these datasets, 11 models were trained

and their performances were compared to test for consistency.

E. ANN Architecture
The proposed ANN contained 7 hidden layers and 2 dropout

layers: one between the third and fourth layer and the second

between the seventh and output layer. The proposed number of

hidden layers was determined empirically to avoid overfitting,

due to the large number of connections, but also to maximize

efficiency by keeping training time to a minimum. The ac-

tivation functions for the hidden layers and the output layer

were ReLU and sigmoid, respectively. The dropout rate for

the dropout layers was set to 0.5 to avoid the propagation

of bias between any two gradient descent operations that

could negatively impact the distinguishable features between

microsaccade and drift. The number of nodes was set to 8192,

4096, 2048, 1024, 512, 256, and 128 in that order from the

first to seventh hidden layer. The number of nodes and dropout

layers, and the dropout rates were determined through trial and

error to maximize the model performance, avoid overfitting to

the training data, and minimize training time.
The same neural network architecture was utilized for both

the single-point and sliding-window approaches. This was

carried out to ensure the changes in performance is due to

the feature learning approach and not the architecture. After

the models were trained, the unlabeled testing data were tested

to analyze the performance of the models. We calculated the

accuracy, precision, sensitivity, and specificity [11] to measure

the performance of the ANN models. Other metrics, the

number of microsaccades and the average peak velocity, ac-

celeration, duration and amplitude of the microsaccades were

also calculated. The metrics were compared with the ground

truth to compare the performance of the two approaches.

III. RESULTS

The performance of the trained ANN models were evaluated

using the test data. Fig. 3 compares the classification of

microsaccades and drifts for the ground truth, sliding-window

approach, and single-point approach. The sliding-window ap-

proach performed better than the single-point approach. As

shown in Fig. 3(b) and Fig. 3(c), the sliding-window approach

was able to detect and segment all microsaccades in the dataset

and additional microsaccades were labeled as well (later dis-

cussed). However, the single-point approach performed poorly,

not being able to detect even half the microsaccades in this

particular dataset. Fig. 3 mainly compares the labels generated

by the two approaches. Statistical metrics were calculated to

further analyze the performance of both approaches.

TABLE I
CONFUSION MATRIX FOR BOTH FEATURE SPACE APPROACHES.

Performance Metrics Performance Scores
single-point

Analysis
Sliding-Window

Analysis
Accuracy 69.8 84.5
Precision 79.6 90.3
Sensitivity 53.3 77.9
Specificity 86.2 91.2

The confusion matrix was calculated for the 11 different

models of the two approaches and the averages were taken to

produce one confusion matrix for both approaches. Table 1

displays the statistical metrics calculated for both approaches

averaged across the 11 models that were trained for each

approach. For this study, the microsaccades were considered as

positive in the confusion matrix and the drifts were considered

as negative. The sliding-window approach had an accuracy

score of 84.5% whereas the single-point approach had an accu-

racy score of 69.8%. The precision, sensitivity and specificity

scores for the sliding-window approach were all greater than

that of the single-point approach. The difference shown in

Table 2 demonstrates that the sliding-window approach was

able to outperform the single-point approach as it was closer

to the ground truth when comparing the percentage errors of

the two feature space approaches. The only metric that was not

too different was the amplitude but the rest showed superiority

of the sliding-window approach. These percentage errors pro-

vide support that the sliding-window approach substantially

outperformed the single-point approach.

The precision scores of 79.6 and 90.3 indicate that our

trained 1D ANN models with the proposed feature learning

approaches are efficient and can segment (or detect) microsac-

cades with very low false positive and high true positive

measures in both feature-extraction schemes. These quality

measures also indicate that the sliding-window feature learning

is highly efficient. At the same time, the sensitivity score

of 53.3 explains that the false negative and true positive

are almost the same, which indicate the model has some

performance issue in classifying the drift class under the

single-point analysis. However, the larger sensitivity score of

77.9 of the sliding-window analysis indicate that the model

can classify the drift class in the sliding-window model.
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Fig. 3. Comparison between ground truth and ANN using either the single-point or sliding-window feature space for training: A dataset was passed
through the single-point and sliding-window approaches to be labeled. The figure above shows the classification in the x-position parameter space. Top: ground
truth, Middle: sliding-window approach, Bottom: single-point approach. The arrows show a discrepancy in classification between the sliding-window approach
compared to both the ground truth and single-point approach.

TABLE II
THE AVERAGE PERCENT ERROR ACROSS THE 22 TEST FEM DATASETS WERE CALCULATED FOR THE FIVE STATISTICAL METRICS. THE ERROR WAS

COMPARING THE SINGLE-POINT APPROACH AND THE SLIDING-WINDOW APPROACH TO THE GROUND TRUTH.

Statistical Metrics Percent error (%)
Number of

Microsaccades
Average Peak

Velocity
Average Peak
Acceleration

Average
Duration

Average
Amplitude

Approach Single
Point

Sliding
Window

Single
Point

Sliding
Window

Single
Point

Sliding
Window

Single
Point

Sliding
Window

Single
Point

Sliding
Window

Average 67.2 21.6 25.2 13.8 34.5 14.9 50.9 27.1 15.3 13.1

IV. DISCUSSION

The sliding-window analysis approach outperformed the

single-point analysis approach when considering all the statis-

tical metrics. More specifically, the precision and specificity

values for the sliding-window approach were higher than that

of the single-point approach, indicating low false positives

with high true positives and true negatives. This also indicates

that the model that was trained with the sliding-window based

feature space was superior to the single-point based feature

space. The percent errors also provide more support that the

sliding-window based feature space was superior to the single-

point based feature space since the sliding-window approach

had significantly lower errors in all metrics compared. An

interesting finding can be seen in Fig.3, comparing the ground

truth and the sliding-window approach. The sliding-window

approach was able to capture all of the microsaccades that

were labeled by the ground truth but there were other data

points labeled as a microsaccade where the ground truth

label was a drift (arrows in Fig. 3). Since manual labeling

is subjective and prone to human error, the grader may have

missed this microsaccade during grading. Hence, we revisited

the data and carefully inspected the raw TSLO video to

observe the grading errors. The video clearly showed that

there was a microsaccade at this position, demonstrating that

the trained ANN detected a microsaccade that was missed by

the grader. This is just one instance of this finding. There

are other instances where the trained ANN picked up on a

few missed microsaccades. We propose two reasons for these

unmarked microsaccades: the trained ANN model mislabeled

a microsaccade that should have been actually labeled as
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drift or it detected a microsaccade that a grader might have

missed or did not consider to be a microsaccade. This leads to

the possibility that a trained ANN model not only grade the

FEM dataset quicker than graders but also be more accurate.

It important to study this problem further to confirm this

findings. The architecture of the ANN is simple and works

well for the purposes of this study, but there are ways to

improve the neural network to further increase accuracy and

performance. The feature space used in this study consists of

the two-dimensional positions, and the velocity. Increasing the

feature space is expected to improve the performance.

There is a study that utilized a one-dimensional

convolutional neural network (CNN) to classify human

activity (https://machinelearningmastery.com/cnn-models-for-

human-activity-recognition-time-series-classification/). This is

an alternative that can provide improved results as a CNN

may be able to learn the complex, unique behaviors of

microsaccades better than an ANN model. Since we aim

to have a method for microsaccade segmentation that is

robust and can be used as a first step towards the extraction

of diagnostic features from eye movement recordings, it is

essential that it be as close to flawless in its performance as

possible. Our future research will include the development of

a fully automated microsaccade segmentation approach. Such

a tool would facilitate the use of FEMs in clinical settings,

where rapid segmentation and quantification of microsaccade

parameters might be useful for evaluating patients. The ANN

model also needs to be streamlined into clinical devices so that

clinicians can have access to these metrics during clinical visits

from patients. It will allow for immediate interpretation of the

patient’s results. We recently demonstrated that microsaccades

can differentiate concussed patients from controls in a certain

type of fixation task [17]. However, analyzing the properties

of microsaccades is just the first step towards using FEM

recordings as a diagnostic tool. Segmented eye traces would

undergo subsequent evaluation to determine if a patient is a

healthy patient or an injured (or a diseased) patient.

V. CONCLUSION

Automated microsaccade segmentation can be successfully

achieved using a one-dimensional ANN with a sliding-window

based feature space that is enhanced by the directional variance

measure. This approach may be useful for the automatic

segmentation of microsaccades in clinical settings. Efficient

and robust automatic extraction of FEMs based biomarkers

offers promise as a powerful tool for improved detection and

monitoring of neurological conditions and brain injury.
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